乘方是指将某个量或符号提升到任意指定次幂或对它施加一个指定指数的行为或过程;或n 个 a 相乘的积称为 a 的 n 次幂
在a^n中,相同的乘数a叫做底数,a的个数n叫做指数(exponent),乘方运算的结果a^n叫做幂。a^n读作a的n次方,如果把a^n看作乘方的结果,则读作a的n次幂。a的二次方(或a的二次幂)也可以读作a的平方;a的三次方(或a的三次幂)也可以读作a的立方。
如果2的3次方(也可以是2的立方),它就等于2x2x2=8,那么指数是多少就是多少个底数相乘,指数是1通常不写。
每一个自然数都可以看作这个数的一次方,也叫作一次幂。如:8可以看作8^1。当指数是1时,通常省略不写。
运算顺序:先括号,再乘方,接乘除,尾加减。
计算一个数的小数次方,如果那个小数是有理数,就把它化为p/q(即分数)的形式,那么任何一个数n的
/q次方就等于n的p次方再开q次根号。
特别地,0^n=0(n﹥0)n^0=1(n≠0)
同底数幂相乘除,原来的底数作底数,指数的和或差作指数。
用字母表示为:
a^m×a^n=a^(m+n) 或 a^m÷a^n=a^(m-n) (m、n均为自然数)
1)15^2×15^3; 2)3^2×3^4×3^8; 3)5×5^2×5^3×5^4×…×5^901)15^2×15^3=15^(2+3)=15^5
2)3^2×3^4×3^8=3^(2+4+8)=3^14
3)5×5^2×5^3×5^4×…×5^90=5^(1+2+3+…+90)=5^4095