18260857099

数列的概念

作者: 2022-06-07 14:27 来源:南宁编辑
收藏

数列(sequence of number)是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项,通常用an表示。

发展由来

传说古希腊(约公元前570-约公元前500年)毕达哥拉斯学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数。比如,他们研究过1,3,6,10,...。

由于这些数可以用如右图所示的三角形点阵表示,他们就将其称为三角形数。类似地,1,4,9,16...,被称为正方形数,因为这些数能够表示成正方形。

 

概念描述

函数理解

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。

③函数不一定有解析式,同样数列也并非都有通项公式。

数列的一般形式可以写成

a1,a2,a3,…,an,a(n+1),……

简记为{an},

项数有限的数列为“有穷数列”(finite sequence),

项数无限的数列为“无穷数列”(infinite sequence)。

数列的各项都是正数的为正项数列;

从第2项起,每一项都大于它的前一项的数列叫做递增数列;如:1,2,3,4,5,6,7;

从第2项起,每一项都小于它的前一项的数列叫做递减数列;如:8,7,6,5,4,3,2,1;

从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列;

各项呈周期性变化的数列叫做周期数列(如三角函数);

各项相等的数列叫做常数列(如:2,2,2,2,2,2,2,2,2)。

通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不唯一)。

递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。

数列中项的总数为数列的项数。特别地,数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数an=f(n)。

如果可以用一个公式来表示,则它的通项公式是a(n)=f(n).

并非所有的数列都能写出它的通项公式。例如:π的不同近似值,根据精确的程度,可形成一个数列3,3.1,3.14,3.141,…它没有通项公式。

数列中的项必须是数,它可以是实数,也可以是复数。

用符号{an}表示数列,只不过是“借用”集合的符号,它们之间有本质上的区别:1.集合中的元素是互异的,而数列中的项可以是相同的。2.集合中的元素是无序的,而数列中的项必须按一定顺序排列,也就是必须是有序的。

表示方法

如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。如an=(-1)^(n+1)+1。

数列通项公式的特点:(1)有些数列的通项公式可以有不同形式,即不唯一。(2)有些数列没有通项公式

如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。如an=2a(n-1)+1 (n>1)

数列递推公式的特点:(1)有些数列的递推公式可以有不同形式,即不唯一。(2)有些数列没有递推公式

有递推公式不一定有通项公式。(3)有通项公式一定有递推公式。

姓名:
电话:
提交需求
  • 品牌简介
  • 精品项目
  • 课程中心
  • 线上课堂
  • 雅思/sat考团
  • 校区地图
您想学习哪门课程
    您的目标分数
      您的学习周期
      • 一个月
      • 三个月
      • 六个月
      • 六个月以上
      获取报价

      我们将在一个工作日内通知您报价结果

      热门活动

      注册/登录

      +86
      获取验证码

      登录

      +86

      收不到验证码?

      知道了

      找回密码

      +86
      获取验证码
      下一步

      重新设置密码

      为您的账号设置一个新密码

      保存新密码

      密码重置成功

      请妥善保存您的密码
      立即登录

      为了确保您的帐号安全

      请勿将帐号信息提供给他人/机构